Contents

Introduction ... 3
 Contents in this Operation Manual 3
 Features .. 3

Panel Controls and Terminals (Details) 4
 Rear Panel ... 4
 Front Panel ... 5

Panel Controls for the Software Programs 7
 Control Panel of the Audio Driver 7
 dspMixFx UR824 ... 8
 Dedicated Windows for Cubase Series 14
 Sweet Spot Morphing Channel Strip (Channel Strip) 18
 REV-X ... 20

Usage Examples .. 23
 Introduction .. 23
 Recording with the Channel Strip and REV-X 23
 Connecting the Mic Preamp .. 25
 Using the Device Without a Computer 25

Appendix .. 27
 Glossary .. 27
 Contents of the Getting Started Section 28
 Signal Flow ... 29
 Block Diagrams .. 31
Introduction

Contents in this Operation Manual

This Operation Manual explains how to use the device. The explanations in this manual assume that you’ve set up the device and prepared it for use according to the included Getting Started document. If you haven’t done that yet, refer to the Getting Started document and complete the setup before reading this manual.

Features

High-resolution Microphone Preamplifiers (D-PRE)
Discrete microphone preamps featuring a high-performance inverted Darlington circuit configuration achieve low distortion and noise while delivering sound with eminently musical balance and character.

Supports a Variety of Inputs
Switchable phantom power is provided for condenser microphones, electric guitars and basses can be directly connected via a HI-Z (high impedance) input, and a PAD is provided for input matching with high-level signals from electronic instruments. Optical input connectors enable direct digital input in ADAT or S/PDIF format from a variety of digital audio devices, while a BNC-connector for word clock input and output allows precise synchronization with other digital equipment.

Powerful DSP Mixer (dspMixFx)
A DSP mixer that can mix up to 24 input channels to four stereo outputs is built in. Two of those stereo mixes can be independently assigned to separate headphone outputs. It is also possible to directly route a stereo input to any specified stereo output. A number of DSP effects that can be applied to input signals are also provided, and since it is a hardware mix with there is no monitoring latency.

DSP Effect “Sweet Spot Morphing Channel Strip”
The Sweet Spot Morphing Channel Strip (“Channel Strip” for short) is a multi-effect that combines compression and EQ. Advanced sound engineering know-how is condensed into a number of presets that can simply be recalled as required for professional results. Eight channel strips are provided, and each can be assigned to the monitor sound only, or to both the monitor and recorded sound.

DSP Effect: REV-X Reverb
REV-X is a digital reverb platform developed by Yamaha for pro audio applications. One REV-X effect is included in this unit. Input signals can be sent to the REV-X effect, and the REV-X effect is applied only to the monitor outputs.

DSP Effect VST Plug-ins Included
VST Plug-in (VST3.0, page 27) versions of the Channel Strip and REV-X effects are included for use with Cubase series or similar VST-compatible DAW software.

Cubase AI Included
Steinberg Cubase AI digital audio workstation (DAW, page 27) software is included. Cubase AI is the entry-level version of the Cubase series DAW products, providing the basic functionality you need for music production and editing.
Panel Controls and Terminals (Details)

Rear Panel

1. DC IN 16V
 For connection to the AC power adaptor.

2. Grounding screw
 For connection to a ground wire.
 If you have a problem with hum or noise, use this terminal to connect to ground. The noise may be reduced.

3. USB2.0 (USB port)
 For connection to a computer.

4. WCLK switch
 Switches between IN and OUT for the upper WCLK terminal.

5. WCLK IN (OUT)/OUT (BNC connector)
 For connection to the device which transmits and receives the word clock.

6. OPTICAL A/B IN/OUT (optical)
 For connection to a digital audio device.
 You can select the format of the OPTICAL A/B between ADAT and S/PDIF. To select the format, use the “Setup Window” (page 12) in the section “dspMixFx UR824” or the “Settings Window” (page 18) in the section “Dedicated Windows for Cubase Series.”
 You can select the output signal of the OPTICAL A/B OUT. To select the output signal, use the “Setup Window” (page 12) in the section “dspMixFx UR824” or the “Output Routing Window” (page 17) in the section “Dedicated Windows for Cubase Series.”

7. LINE OUTPUT 1–8 (phone type, balanced/unbalanced)
 For connection to monitor speakers. When the monitor speakers have a balanced input, connect them with a balanced cable.
 You can select the output signal of LINE OUTPUT 1–8. To select the output signal, use the “Setup Window” (page 12) in the section “dspMixFx UR824” or the “Output Routing Window” (page 17) in the section “Dedicated Windows for Cubase Series.”

8. MIC/LINE INPUT 3–8 (XLR/phone type, balanced/unbalanced)
 For connection to a microphone or digital instrument.
Front Panel

1. MIC/LINE/HI-Z (XLR/phone type, balanced/unbalanced)
 For connection to a microphone, digital instrument, electric guitar, or electric bass.

2. HI-Z switch
 Turns on (●) and off () the HI-Z of the MIC/LINE/HI-Z.
 Turn this switch on when connecting high impedance instruments, such as an electric guitar or electric bass, directly to the MIC/LINE/HI-Z.
 When you turn this switch on, use an unbalanced phone type cable for connection between the instrument and the MIC/LINE/HI-Z. If you use a balanced cable or an XLR cable, this device will not work correctly.

 CAUTION
 • Do not connect or disconnect a device while turning on the HI-Z switch. Doing so can damage the connected device and/or the unit itself.
 • To protect your speaker system, leave the monitor speakers turned off when turning the HI-Z switch on/off. It’s also a good idea to turn all output volume controls down to their minimum. Neglect of these precautions may result in large noise bursts that may damage your equipment, your ears, or both.

3. PAD switch
 Turns on (●) and off () the PAD of the analog input jacks (MIC/LINE/HI-Z and MIC/LINE INPUT).
 When you turn this switch on, the input signal level of the analog input jacks will be attenuated by 26 dB. Turn this switch on when connecting high output equipment, such as a synthesizer, to the analog input jacks.

4. SIG/PEAK lamp
 Indicates the input signal level of the analog input jacks (MIC/LINE/HI-Z and MIC/LINE INPUT).

<table>
<thead>
<tr>
<th>Lamp status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>-3 dB or more</td>
</tr>
<tr>
<td>Green</td>
<td>40 dB or more – less than -3 dB</td>
</tr>
<tr>
<td>Dark</td>
<td>Less than -40 dB</td>
</tr>
</tbody>
</table>

5. INPUT GAIN knob
 Adjusts the input signal level of the analog input jacks (MIC/LINE/HI-Z and MIC/LINE INPUT). The adjustable range varies depending on the on/off setting of the PAD switch.

<table>
<thead>
<tr>
<th>PAD</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>-34 dB – +10 dB</td>
</tr>
<tr>
<td>Off</td>
<td>-60 dB – -16 dB</td>
</tr>
</tbody>
</table>

6. +48V button
 Turns on (lit) and off (dark) the phantom power of XLR type connections on analog input jacks (MIC/LINE/HI-Z and MIC/LINE INPUT).
 When you turn on this button, phantom power will be supplied to the two adjacent analog input jacks. Turn on this button when connecting phantom powered devices, such as a condenser microphone, to the analog input jacks.

 CAUTION
 • Make sure that phantom power is turned OFF unless it is needed.
 • When turning phantom power ON, make sure that no equipment other than phantom-powered devices such as condenser microphones are connected. Devices other than condenser microphones may be damaged if connected to the phantom power supply. Note, however, that the switch may be left on when connecting to balanced dynamic microphones. When connecting an unbalanced device to the MIC/LINE/HI-Z and MIC/LINE INPUT and phantom power is turned on, hum or noise may result; this is not a malfunction or failure in the device.
• Do not connect or disconnect a device while phantom power is applied. Doing so can damage the connected device and/or the unit itself.
• To protect your speaker system, leave the monitor speakers turned off when switching the phantom power on/off. It's also a good idea to turn all output volume controls down to their minimum. Neglect of these precautions may result in large noise bursts that may damage your equipment, your ears, or both.

PHONES knob 1/2
Adjusts the output signal level of PHONES 1/2. This output signal level is not affected by the OUTPUT LEVEL knob.

PHONES 1/2 output one of the MIX 1–4 signals. To select the output signal, use the “Headphone Area” (page 12) in the section “dspMixFx UR824” or the “Headphones Window” (page 17) in the section “Dedicated Windows for Cubase Series.”

PHONES 1/2 (phone type, stereo)
For connection to a set of headphones. PHONES 1/2 output one of the MIX 1–4 signals. To select the output signal, use the “Headphone Area” (page 12) in the section “dspMixFx UR824” or the “Headphones Window” (page 17) in the section “Dedicated Windows for Cubase Series.”

Word clock source lamp
Indicates the word clock (page 27) source of the device.

<table>
<thead>
<tr>
<th>Lamp</th>
<th>Clock Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>WCLK</td>
<td>The word clock signal input to the WCLK IN.</td>
</tr>
<tr>
<td>ADAT A</td>
<td>The word clock signal input to the OPTICAL A IN.</td>
</tr>
<tr>
<td>ADAT B</td>
<td>The word clock signal input to the OPTICAL B IN.</td>
</tr>
<tr>
<td>INTERNAL</td>
<td>The internal word clock signal.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lamp status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lit</td>
<td>Synchronized with the clock source.</td>
</tr>
<tr>
<td>Flash</td>
<td>Not synchronized with the clock source.</td>
</tr>
</tbody>
</table>

To select the clock source of the device, use the “(device name) Window” (page 7) in the section “Control Panel of the Audio Driver” in Windows or Audio MIDI Setup in Mac.

Sample rate lamp
Indicates the sample rate of the device.

<table>
<thead>
<tr>
<th>Lamp</th>
<th>Sample Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>96k and 48k</td>
<td>192kHz</td>
</tr>
<tr>
<td>88k and 44k</td>
<td>176.4kHz</td>
</tr>
<tr>
<td>96k</td>
<td>96kHz</td>
</tr>
<tr>
<td>88k</td>
<td>88.2kHz</td>
</tr>
<tr>
<td>48k</td>
<td>48kHz</td>
</tr>
<tr>
<td>44k</td>
<td>44.1kHz</td>
</tr>
</tbody>
</table>

To select the sample rate of the device, use the “(device name) Window” (page 7) in the section “Control Panel of the Audio Driver” in Windows or Audio MIDI Setup in Mac.

OUTPUT LEVEL knob
Adjusts the output level of the LINE OUTPUT 1–8 signals.

To select the LINE OUTPUT for adjusting the output signal level, use the “Setup Window” (page 12) in the section “dspMixFx UR824” or the “Master Levels Window” (page 17) in the section “Dedicated Windows for Cubase Series.”

Power button
Turn the power on and off.

| Power on | Press the power button (). The power button will light. |
| Power off | Hold down the power button () for over one second. The power button will light dimly. |
Panel Controls for the Software Programs

Control Panel of the Audio Driver
This is the control panel for selecting the general settings of the audio driver. Click the upper tabs to select the desired window.

Screenshot

How to Open the Window

Windows
- [Control Panel] → [Hardware and Sound] or [Sounds, Speech, and Audio Devices] → [Yamaha Steinberg USB Driver]
- From the Cubase series menu, [Devices] → [Device Setup] → [Yamaha Steinberg USB ASIO] → [Control Panel]

Mac
- [System Preferences] → [Yamaha Steinberg USB]
- From the Cubase series menu, [Devices] → [Device Setup] → [Steinberg UR824] → [Control Panel] → [Open Config App]

Panel Controls

(Device name) Window
This is the window for selecting the sample rate or word clock source of the device.

![Screenshot of the Panel Controls](image)

1. **Sample Rate (Windows only)**
 Selects the sample rate of the device.
 Option: 44.1 kHz, 48 kHz, 88.2 kHz, 96 kHz, 176.4 kHz, 192 kHz

 NOTE
 For Mac, select the sample rate of the device via the Audio MIDI Setup.

2. **Clock Source (Windows only)**
 Selects the word clock source of the device.
 Option
 - **WCLK** The word clock signal input to the WCLK IN.
 - **ADAT A** The word clock signal input to the OPTICAL A IN.
 - **ADAT B** The word clock signal input to the OPTICAL B IN.
 - **Internal** The internal word clock signal.

 NOTE
 For Mac, select the word clock source of the device via the Audio MIDI Setup.
Enable Power Management
Select enable (checkmark) and disable (no checkmark) for automatic power off.

The device is equipped with an automatic power off function. When this function is enabled, the power of the device will turn off automatically (after thirty minutes) when one of the following actions is performed. The power button will flash during the thirty-minute interval.

- Turning off the computer.
- Disconnecting the USB cable between the device and the computer.

ASIO Window (Windows only)
This is the window for selecting the ASIO driver settings.

Device
Selects the device that will be using the ASIO driver. This function is available when connecting to the computer two or more devices compatible with the Yamaha Steinberg USB Driver.

Buffer Size
Selects the buffer size (page 27) for the ASIO driver. The range varies depending on the sample rate.

<table>
<thead>
<tr>
<th>Sample Rate</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.1 kHz/44.8 kHz</td>
<td>64 samples – 2048 samples</td>
</tr>
<tr>
<td>88.2 kHz/96 kHz</td>
<td>128 samples – 4096 samples</td>
</tr>
<tr>
<td>176.4 kHz/192 kHz</td>
<td>256 Samples – 8192 Samples</td>
</tr>
</tbody>
</table>

NOTE
For Mac, select the buffer size in the buffer size selecting window, which is opened from an application such as DAW software.

Input Latency/Output Latency
Indicates the delay time for the audio input and output in millisecond units.

Audio latency varies depending on the value of the ASIO buffer size. The lower the value of the ASIO buffer size, the lower the value of Audio latency.

About Window
This window indicates information about the audio driver.

About
Indicates the version and copyright of the audio driver. The letters “x.x.x” indicate the version number.

DSP MixFx UR824
This is the window for configuring the DSP mixer and DSP effect equipped with the device. The signals flow top-to-down and left-to-right. The DSP MixFx UR824 provides stand-alone operation.

NOTE
You cannot operate the DSP MixFx UR824 while a Cubase series DAW is running. When Cubase is running, configure the DSP mixer and DSP effect from “Dedicated Windows for Cubase Series” (page 14).
How to Open the Window

Windows XP/Windows Vista/Windows 7
[Start] → [All Programs] → [Steinberg UR824] → [dspMixFx UR824]

Windows 8
Right-click anywhere on Start screen → [app] → [Steinberg UR824] → [dspMixFx UR824]

Mac
[Macintosh HD] → [Applications] → [dspMixFx UR824]

Panel Controls

Tool Area
This is the area for configuring the common settings of the dspMixFx UR824.

1 Quit
Quits the dspMixFx UR824.

2 Minimize
Minimizes the dspMixFx UR824 window.

3 Menu
Provides four menus, including Save the settings file of the dspMixFx UR824 (page 27) and Import Scene (page 27).

4 Scene
Indicates the scene name. You can change the scene name by clicking on it.

When you click the button on the right side, the window for calling up the scene will open. You can call up the scene by clicking it. To cancel calling up the scene, click outside of the window.

5 STORE
Opens the scene store window. Enter the desired scene name into the STORE NAME field. Select the destination for storing the scene in the No. NAME field. Click [OK] to store the scene.

6 Selecting the window
Selects the dspMixFx UR824 window. The selected window icon will light in red.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Main window (page 9)</td>
</tr>
<tr>
<td></td>
<td>Level Meter window (page 12)</td>
</tr>
<tr>
<td></td>
<td>Setup window (page 12)</td>
</tr>
<tr>
<td></td>
<td>Information window (page 14)</td>
</tr>
</tbody>
</table>

7 Help
Opens the Operation Manual (this manual).

Main Window
This is the window for configuring the entire signal flow.

Channel Area (page 10) MIX Area (page 12)
Channel Area
This is the area for configuring the input channel settings.

1. **Channel Link**
 - Turns on (lit) and off (dark) the channel link of two adjacent channels. When you turn this on, two mono channels will become one stereo channel.

2. **Level Meter**
 - Indicates the signal level.

3. **High Pass Filter**
 - Turns on (lit) and off (dark) the high pass filter.
 - To select the cutoff frequency of the high pass filter, use the “Setup Window” (page 12) in the section "dspMixFx UR824."

4. **Phase**
 - Turns on (lit) and off (dark) the phase inversion of the signal.

5. **Channel Strip Insertion Location**
 - Selects the insertion location of the Channel Strip.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MON.FX</td>
<td>Applies the Channel Strip to only the monitor signal (sent to the device).</td>
</tr>
<tr>
<td>INS.FX</td>
<td>Applies the Channel Strip to both the monitor signal (sent to the device) and the recording signal (sent to a DAW software).</td>
</tr>
</tbody>
</table>

6. **Channel Strip On/Off**
 - Turns the Channel Strip on (lit) and off (dark).
 - You can apply eight Channel Strip to the mono channel, or four Channel Strip to the stereo channel. Please note that you cannot use the Channel Strip when the sample rate is set to 176.4 kHz or 192 kHz.

7. **Channel Strip Edit**
 - Opens (lit) and closes (dark) the “Channel Strip” (page 18) setup window.

8. **Effect Type**
 - Indicates the effect type.

9. **REV-X Send**
 - Adjusts the signal level which is sent to the REV-X.
 - Range: $-\infty \text{ dB} – +6.00 \text{ dB}$

10. **Pan**
 - Adjusts the pan.
 - Range: L16 – C – R16

11. **Mute**
 - Turns the mute on (lit) and off (dark).

12. **Solo**
 - Turns the solo on (lit) and off (dark).

13. **+48V**
 - Indicates the on/off status of the phantom power function of the device.

14. **Fader**
 - Adjusts the signal level.
 - Range: $-\infty \text{ dB} – +6.00 \text{ dB}$
DAW Area
This is the area for configuring the DAW channel settings.

1. **Level Meter**
 Indicates the signal level.

2. **Pan**
 Adjusts the pan.
 Range: L16 – C – R16

3. **Mute**
 Turns the mute on (lit) and off (dark).

4. **Solo**
 Turns the solo on (lit) and off (dark).

5. **Fader**
 Adjusts the signal level.
 Range: ∞ dB – +6.00 dB

Master Area
This is the area for configuring the master channel settings.

1. **Level Meter**
 Indicates the signal level.

2. **REV-X Send On/Off**
 Turns the REV-X on (lit) and off (dark).
 You can turn this on for one of MIX 1–4.

3. **REV-X Edit**
 Opens (lit) and closes (dark) the “REV-X” (page 20) setup window.

4. **REV-X Type**
 Selects the REV-X type.
 Option: Hall, Room, Plate

5. **REV-X Time**
 Adjusts the reverb time of the REV-X. This parameter links to Room Size. The adjustable range varies depending on the REV-X type.

<table>
<thead>
<tr>
<th>REV-X type</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hall</td>
<td>0.103 sec – 31.0 sec</td>
</tr>
<tr>
<td>Room</td>
<td>0.152 sec – 45.3 sec</td>
</tr>
<tr>
<td>Plate</td>
<td>0.176 sec – 52.0 sec</td>
</tr>
</tbody>
</table>
REV-X Return Level
Adjusts the return level of the REV-X.
Range: $\infty \text{ dB} - +6.00 \text{ dB}$

Pan
Adjusts the pan.
Range: L16 – C – R16

Mute
Turns the mute on (lit) and off (dark).

Fader
Adjusts the signal level.
Range: $\infty \text{ dB} - +6.00 \text{ dB}$

MIX Area
This is the area for selecting the MIX you want to configure.

PHONES On/Off
Turns on (lit) and off (dark) the headphone. You can output the MIX selected in the MIX area to the PHONES by turning this on.

Level Meter Window
This is the window for indicating the level meter of all channels on the upper part of the window. Also, this window indicates the controls of some channels on the lower part of the window. The function of the controls are the same as those described in the section “Main Window” (page 9).

Setup Window
This is the window for configuring the common settings of the device.

CONTROL PANEL
For Windows, this opens the “Control Panel of the Audio Driver” (page 7). For Mac, this opens the Audio MIDI Setup.

HPF
Selects the cutoff frequency of the high pass filter.
Option: 120 Hz, 100 Hz, 80 Hz, 60 Hz, 40 Hz
DIGITAL MODE
Selects the input and output signal format of the OPTICAL A/B.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADAT</td>
<td>This is an input and output signal format supporting up to 8 channels.</td>
</tr>
<tr>
<td>S/PDIF</td>
<td>This is a 2-channel input and output signal format.</td>
</tr>
</tbody>
</table>

When ADAT is selected, the OPTICAL A/B terminals input and output signals of up to eight channels at 44.1 kHz and 48 kHz, or up to four channels at 88.2 kHz and 96 kHz, or up to two channels at 176.4 kHz and 192 kHz. When S/PDIF is selected, the OPTICAL A/B terminals input and output signals of up to two channels at any available sample rate.

LINE OUT
Selects the output signal of the LINE OUTPUT.

OPTICAL A/B OUT
Selects the output signal of the OPTICAL A/B OUT.

The number of OUT selections displayed here varies depending on the sample rate or DIGITAL MODE setting.

Knob Control
Selects which LINE OUTPUT signal level is to be adjusted by the OUTPUT LEVEL knob on the device. You can select more than one LINE OUTPUT at the same time. Checkmarks indicate the selected LINE OUTPUT signals.

Master Level Knob
Adjusts the output signal level of the LINE OUTPUT. Please note that this Master Level knob is disabled for the LINE OUTPUT with a checkmark on the Knob Control.

Master Level
Indicates the output signal level of the LINE OUTPUT.

KNOB MOUSE CONTROL
Selects the method of operating the knobs on the dspMixFx UR824.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circular</td>
<td>Drag in a circular motion to increase and decrease the parameter. Drag in a dial clockwise to increase, and counterclockwise to decrease. If you click any point on the knob, the parameter will jump there instantly.</td>
</tr>
<tr>
<td>Linear</td>
<td>Drag in a linear motion to increase and decrease the parameter. Drag to the upward or rightward to increase, and downward or leftward to decrease. Even if you click any point on the knob, the parameter will not jump there.</td>
</tr>
</tbody>
</table>

SLIDER MOUSE CONTROL
Selects the method of operating the sliders and faders on the dspMixFx UR824.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jump</td>
<td>Click any point on the slider and fader to increase and decrease the parameter. If you click any point on the slider and fader, the parameter will jump there instantly.</td>
</tr>
<tr>
<td>Touch</td>
<td>Drag the handle of the slider and fader to increase and decrease the parameter. Even if you click any point on the slider and fader, the parameter will not jump there.</td>
</tr>
</tbody>
</table>
Information Window
This window indicates information about the dspMixFx UR824 and the device.

1. **Version Information**
 Indicates the version of the firmware and software. The letters "x.x.x" and "x.xx" indicate the version number.

2. **Check for update**
 Checks whether or not you have the latest software and firmware version, via the Internet. If a new version is found, follow the on-screen instructions for updating.

Dedicated Windows for Cubase Series
These are the windows for configuring the device settings from Cubase series. The Dedicated Windows for Cubase series allow you to configure the parameters which are configured by the dspMixFx UR824, from Cubase series. Two types of windows are available: Input Settings and Hardware Setup.

Input Settings Window
This is the window for configuring the input settings of the device. The signal flow is from top to bottom. The settings on this window are saved to the Cubase project file, except for the +48V indicator.

Hardware Setup Window
This is the window for configuring the general settings of the device. Click the upper tabs to select the window. Only the settings on the Reverb Routing window are saved to the Cubase project file.

Screenshot

Input Settings Window

Hardware Setup Window

How to Open the Window

Input Settings Window
The Input Settings window appears in the following windows.
- In the Mixer window (Cubase and Cubase Artist only)
- In the VST Input Channel Settings window (Cubase and Cubase Artist only)
- In the VST Audio Channel Settings window (other Cubase series software)

In the Mixer Window (Cubase and Cubase Artist only)
1. [Devices] → [Mixer] to open the Mixer window.
2. Click “Show Extended View.”
3. Click “Extended View Type/Can Hide State” in the input channel.

4. Click [Hardware].

In the VST Input Channel Settings Window (Cubase and Cubase Artist only)
1. [Devices] → [Mixer] to open the mixer.
2. Click “Edit Input Channel Settings” in the input channel.

The Input Settings window appears in the VST Input Channel Settings window as shown below.

The Input Settings window appears in the Mixer window as shown below.

In the VST Audio Channel Settings Window (other Cubase series software)
1. Click the audio track from the track list.
2. Click “Edit Channel Settings” in the audio track.

The Input Settings window appears in the VST Audio Channel Settings window as shown below.

Hardware Setup Window
[Devices] → [Audio Hardware Setup]
Panel Controls

Input Settings Window

1. +48V
 Indicates the on/off status of the phantom power function of the device.

2. Phase
 Turns on (lit) and off (dark) the phase inversion of the signal.

3. High Pass Filter
 Turns on (lit) and off (dark) the high pass filter.

 To select the cutoff frequency of the high pass filter, use the “Settings Window” (page 18) in the section “Dedicated Windows for Cubase Series.”

4. Channel Strip Edit
 Opens the “Channel Strip” (page 18) setup window.

5. DRIVE
 Adjusts the degree to which the compressor is applied. The higher the value, the greater the effect.

 Range: 0.00 – 10.00

6. MORPH
 Adjusts the Channel Strip Sweet Spot Data. (Refer to the “MORPH” in the section “Channel Strip” on page 18.)

7. Channel Strip Insertion Location
 Selects the insertion location of the Channel Strip.

<table>
<thead>
<tr>
<th>Insertion location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper (OFF)</td>
<td>Channel Strip is not applied.</td>
</tr>
<tr>
<td>Middle (MON.FX)</td>
<td>Applies the Channel Strip to only the monitor signal (sent to the device).</td>
</tr>
<tr>
<td>Lower (INS.FX)</td>
<td>Applies the Channel Strip to both the monitor signal (sent to the device) and the recording signal (sent to the DAW software).</td>
</tr>
</tbody>
</table>

You can apply eight Channel Strip to the mono channel, or four Channel Strip to the stereo channel. Please note that you cannot use the Channel Strip when the sample rate is set to 176.4 kHz or 192 kHz.

8. Output Position of the Direct Monitoring Signal
 Indicates the position from which the audio signals for monitoring will be output when turning on Direct Monitoring in the device settings on Cubase.

9. REV-X Edit
 Opens the “REV-X” (page 20) setup window.

10. REV-X Send
 Adjusts the signal level which is sent to the REV-X.

 Range: $-\infty$ dB – +6.00 dB

11. Headphones Edit
 Opens the “Headphones Window” (page 17) in the section “Dedicated Windows for Cubase Series.”

12. Reverb Routing Edit
 Opens the “Reverb Routing Window” (page 17) in the section “Dedicated Windows for Cubase Series.”
Panel Controls for the Software Programs

Hardware Setup Window

Headphones Window
This is the window for selecting the output signal of the PHONES on the device.

Phones 1
Selects the output signal of PHONES 1.

Phones 2
Selects the output signal of PHONES 2.

Reverb Routing Window
This is the window for configuring the “REV-X” (page 20) settings.

REV-X Edit
Opens the “REV-X” (page 20) setup window.

REV-X Type
Selects the REV-X type.
Option: Hall, Room, Plate

REV-X Time
Adjusts the reverb time of the REV-X. This parameter links to Room Size. The adjustable range varies depending on the REV-X type.

<table>
<thead>
<tr>
<th>REV-X type</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hall</td>
<td>0.103 sec – 31.0 sec</td>
</tr>
<tr>
<td>Room</td>
<td>0.152 sec – 45.3 sec</td>
</tr>
<tr>
<td>Plate</td>
<td>0.176 sec – 52.0 sec</td>
</tr>
</tbody>
</table>

REV-X Send Source Select
Selects the send source signal which is sent to the REV-X. You can select one signal at a time. The checkmark will be on the selected signal.

REV-X Send Source
Indicates the signal which is sent to the REV-X.

REV-X Return Level
Indicates the return level of the REV-X.

REV-X Return Level knob
Adjusts the return level of the selected (highlighted) signal.
Range: -∞ dB – +6.00 dB

Output Routing Window
This is the window for selecting the output signal of the output jacks on the device.

LINE OUT
Selects the output signal of the LINE OUTPUT.

OPTICAL A/B OUT
Selects the output signal of the OPTICAL A/B OUT.

The number of OUT selections displayed here varies depending on the sample rate or DIGITAL MODE setting.

Master Levels Window
This is the window for configuring the master level of the output jacks on the device.

Knob Control
Selects which LINE OUTPUT signal level is to be adjusted by the OUTPUT LEVEL knob on the device. You can select more than one LINE OUTPUT at the same time. Checkmarks indicate the selected LINE OUTPUT signals.

Master Source
Indicates the LINE OUTPUT.
3 Master Level
Indicates the output signal level of the LINE
OUTPUT.

4 Master Level knob
Adjusts the output signal level of the selected
(highlighted) LINE OUTPUT signal. Please note
that this Master Level Knob will not appear when
selecting a LINE OUTPUT with a checkmark on
the Knob Control.

5 Reset
Sets the output signal level of all LINE OUTPUT
signals not selected in the Knob Control to 0 dB.

Settings Window
This is the window for configuring the device
settings.

Sweet Spot Morphing Channel Strip (Channel Strip)
This is the window for configuring the Channel Strip
settings. The Channel Strip equipped with the
device and the Channel Strip of the VST Plug-in
version have the same parameters.

When using the Channel Strip on Cubase series
programs, you can share the settings between the
built-in Channel Strip and the Channel Strip of the
VST Plug-in version as a preset file. When using the
built-in Channel Strip on Cubase series programs,
turn on the “Direct Monitoring” setting in the
program. Also, when assigning the Channel Strip of
the VST Plug-in version to the effect slot on Cubase
series programs, select it from the “Dynamics”
category (in the case of the default settings).

Please note that you cannot use the built-in Channel
Strip when the sample rate is set to 176.4 kHz or
192 kHz.

Screenshot

How to Open the Window
From Dedicated Windows for Cubase Series
Click “Channel Strip Edit” (page 16) in the section
“Input Settings Window.”

From the dspMixFx UR824
Click “Channel Strip Edit” (page 10) in the section
“Channel Area.”
Panel Controls

Common to Compressor and Equalizer

1. MORPH
 Adjusts the parameter of the Sweet Spot Data.
 You can simultaneously adjust the compressor and equalizer settings which are set to five points around this knob by turning this knob. When you set the knob to the middle of adjacent two points, the compressor and equalizer settings will be set to an intermediate value.

2. Sweet Spot Data
 Selects the Sweet Spot Data (page 27).

3. TOTAL GAIN
 Adjusts the total gain of the Channel Strip.
 Range: -18.0 dB – +18.0 dB

4. Level Meter
 Indicates the output level of the Channel Strip.

Compressor

1. ATTACK
 Adjusts the attack time of the compressor.
 Range: 0.092 msec – 80.00 msec

2. RELEASE
 Adjusts the release time of the compressor.
 Range: 9.3 msec – 999.0 msec

3. RATIO
 Adjusts the ratio of the compressor.
 Range: 1.00 – ∞

4. KNEE
 Selects the knee type of the compressor.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOFT</td>
<td>Produces the most gradual change.</td>
</tr>
<tr>
<td>MEDIUM</td>
<td>Middle setting between SOFT and HARD.</td>
</tr>
<tr>
<td>HARD</td>
<td>Produces the sharpest change.</td>
</tr>
</tbody>
</table>

5. SIDE CHAIN Q
 Adjusts the band width of the side chain filter (page 27).
 Range: 0.50 – 16.00

6. SIDE CHAIN F
 Adjusts the center frequency of the side chain filter.
 Range: 20.0 Hz – 20.0 kHz

7. SIDE CHAIN G
 Adjusts the gain of the side chain filter.
 Range: -18.0 dB – +18.0 dB

8. COMPRESSOR On/Off
 Turns the compressor on (lit) and off (dark).

9. Compressor Curve
 This graph indicates the approximate compressor response. The vertical axis indicates the output signal level, and the horizontal axis indicates the input signal level.

10. Gain Reduction Meter
 Indicates the gain reduction.

11. DRIVE
 Adjusts the degree to which the compressor is applied. The higher the value, the greater the effect.
 Range: 0.00 – 10.00
Equalizer

This graph indicates the characteristics of the 3-band equalizer. The vertical axis indicates the gain, and the horizontal axis indicates the frequency. You can adjust LOW, MID, and HIGH by dragging each handle in the graph.

1. **Equalizer Curve**
 - Adjusts the center frequency of the low band.
 - **LOW F**
 - **LOW G**
 - **MID Q**
 - **MID F**
 - **MID G**
 - **HIGH F**
 - **HIGH G**

2. **LOW F**
 - Adjusts the center frequency of the low band.
 - **Range**: 20.0 Hz – 1.00 kHz

3. **LOW G**
 - Adjusts the gain of the low band.
 - **Range**: -18.0 dB – +18.0 dB

4. **MID Q**
 - Adjusts the band width of the middle band.
 - **Range**: 0.50 – 16.00

5. **MID F**
 - Adjusts the center frequency of the middle band.
 - **Range**: 20.0 Hz – 20.0 kHz

6. **MID G**
 - Adjusts the gain of the middle band.
 - **Range**: -18.0 dB – +18.0 dB

7. **HIGH F**
 - Adjusts the center frequency of the high band.
 - **Range**: 500.0 Hz – 20.0 kHz

8. **HIGH G**
 - Adjusts the gain of the high band.
 - **Range**: -18.0 dB – +18.0 dB

9. **EQUALIZER On/Off**
 - Turns the equalizer on (lit) and off (dark).

REV-X

This is the window for configuring the REV-X settings. Three types of REV-X are available: Hall, Room, and Plate. The REV-X equipped with the device and the REV-X of the VST Plug-in version have essentially the same parameters. However, the “OUTPUT” and “MIX” parameters are only available in the VST Plug-in version.

When using the REV-X on Cubase series programs, you can share the settings between the built-in REV-X and the REV-X of the VST Plug-in version as a preset file. When using the built-in REV-X on Cubase series programs, turn on the “Direct Monitoring” setting in the program. Also, when assigning the REV-X of the VST Plug-in version to the effect slot on Cubase series programs, select it from the “Reverb” category (in the case of the default settings).

The built-in REV-X is equipped with an “FX Bus” which is used for sending the signal from DAW software to the REV-X. For example, to send the recorded audio data to the REV-X, you can check the sound with the REV-X, which is used for monitoring during the recording.

Screenshot

How to Open the Window

From Dedicated Windows for Cubase Series

- Click “REV-X Edit” (page 16) in the section “Input Settings Window.”
- Click “REV-X Edit” (page 16) in the section “Reverb Routing Window.”

From the dspMixFx UR824
Click “REV-X Edit” (page 11) in the section “Master Area.”

Panel Controls

NOTE
This section uses the Hall type of REV-X as an example.

1. **Reverb Time**
 Adjusts the reverb time. This parameter links to Room Size. The adjustable range varies depending on the REV-X type.

 REV-X type Range
 - Hall: 0.103 sec – 31.0 sec
 - Room: 0.152 sec – 45.3 sec
 - Plate: 0.176 sec – 52.0 sec

2. **Initial Delay**
 Adjusts the time that elapses between the direct, original sound and the initial reflections that follow it.
 Range: 0.1 msec – 200.0 msec

3. **Decay**
 Adjusts the characteristic of the envelope from the moment the reverberation starts to the moment it attenuates and stops.
 Range: 0 – 63

4. **Room Size**
 Adjusts the size of the simulated room. This parameter links to Reverb Time.
 Range: 0 – 31

5. **Diffusion**
 Adjusts the spread of the reverberation.
 Range: 0 – 10

6. **HPF**
 Adjusts the cutoff frequency of the high pass filter.
 Range: 20 Hz – 8.0 kHz

7. **LPF**
 Adjusts the cutoff frequency of the low pass filter.
 Range: 1.0 kHz – 20.0 kHz

8. **Hi Ratio**
 Adjusts the duration of reverberation in the high frequency range by using a ratio relative to the Reverb Time. When you set this parameter to 1, the actual specified Reverb Time is fully applied to the sound. The lower the value, the shorter the duration of reverberation in the high frequency range.
 Range: 0.1 – 1.0

9. **Low Ratio**
 Adjusts the duration of reverberation in the low frequency range by using a ratio relative to the Reverb Time. When you set this parameter to 1, the actual specified Reverb Time is fully applied to the sound. The lower the value, the shorter the duration of reverberation in the low frequency range.
 Range: 0.1 – 1.4

10. **Low Freq**
 Adjusts the frequency of the Low Ratio.
 Range: 22.0 Hz – 18.0 kHz

11. **OPEN/CLOSE**
 Opens and closes the window which adjusts the reverb settings.

12. **Graph**
 Indicates the characteristics of reverberation. The vertical axis indicates the signal level, the horizontal axis indicates the time, and the Z-axis indicates the frequency. You can adjust the characteristics of reverberation by dragging the handles in the graph.

13. **OUTPUT (VST Plug-in version only)**
 Indicates the output level of the REV-X.
MIX (VST Plug-in version only)
Adjusts the output level balance between the original sound and effect sound.

Range: 0% – 100%

Time Axis Setting
Select the display range of the time (horizontal axis) on the graph.

Display range: 500 msec – 50 sec

Zoom Out
Zooms out the display range of the time (horizontal axis) on the graph.

Zoom In
Zooms in the display range of the time (horizontal axis) on the graph.

TIPS
- You can reset some parameters to the default value by holding the [Ctrl]/[command] key while you click on the knobs, sliders, and faders.
- You can adjust the parameters more finely by holding the [SHIFT] key while you drag on the knobs, sliders, and faders.
Usage Examples

Introduction
This section introduces some usage examples of the device. It is assumed that the audio driver settings on the DAW software have been properly configured according to the “Basic Operation” section in the included Getting Started manual. If you have not configured them yet, refer to the section “Basic Operation” to complete the configuration.

Recording with the Channel Strip and REV-X
This section shows how to record a vocal to DAW software using the built-in Channel Strip and REV-X on the device. When using Cubase series programs, it is handy to use the project template. These project templates include the settings of the Channel Strip and REV-X. You can start recording instantly by opening the project template. When using programs other than the Cubase series, use the dspMixFx UR824.

NOTE
You cannot use the built-in Channel Strip when the sample rate is set to 176.4 kHz or 192 kHz. When you follow the steps in this section, set the sample rate to 96 kHz or less. To select the sample rate of the device, use the “(device name) Window” (page 7) in the “Control Panel of the Audio Driver” section in Windows or Audio MIDI Setup in Mac.

Connection Example

Operation

Cubase Series Programs
1. Launch the Cubase series DAW.
 The Project Assistant window appears.
2. Select the project template “Steinberg UR824 Vocal-Inst Recording 1” in “Recording” on the Project Assistant window, then click [Create].
3. Turn on Direct Monitoring as follows.
 [Devices] → [Device Setup] → [Yamaha Steinberg USB ASIO] (Windows) or [Steinberg UR824] (Mac) → enter checkmark to “Direct Monitoring” → [OK]
4. Confirm that the "Record Enable" and “Monitor” indicators are turned on (lit) for the audio track.
5. While singing into the microphone, adjust the input signal level of the microphone by the INPUT GAIN knob on the device. Adjust the input signal level so that the SIG/PEAK lamp flashes dimly in red.
6. While singing into the microphone, adjust the output signal level of the headphones by the PHONES knob on the device.
7. Set the Channel Strip settings and REV-X settings on the Input Settings window.
Select the Channel Strip Insertion Location depending on the desired insert point. The default setting is “Lower” (applied to both the monitor signal and the recording signal). For details on the Insertion Location, refer to the “Channel Strip Insertion Location” (page 16) in the section “Dedicated Windows for Cubase Series.”

8. Click “Record” to start the recording.

9. After finishing the recording, click “Stop” to stop it.

10. Turn “Monitor” off (dark) for the audio track.

11. Click the Ruler to move the project cursor to the desired point for starting playback.

12. Click “Play” to check the recorded sound.

When listening to the sound over monitor speakers, adjust the output signal level by the OUTPUT LEVEL knob on the device.

Operation is now completed.

Programs Other Than Cubase Series

1. Launch your DAW software.

2. Open the dspMixFx UR824.
For instructions on how to open the dspMixFx UR824, refer to the section “How to Open the Window” (page 9).

3. Adjust the input signal level of the microphone by the INPUT GAIN knob on the device.
Adjust the input signal level so that the SIG/PEAK lamp flashes dimly in red.

4. Adjust the output signal level of the headphone by the PHONES knob on the device.

5. Set the Channel Strip settings and REV-X settings on the dspMixFx UR824.

6. Start recording on your DAW software.

7. After finishing recording, stop it.
8. Playback the newly recorded sound to check it.

Operation is now completed.

Connecting the Mic Preamp
This section shows how to increase the number of analog input channels you can record by connecting an eight-channel mic preamp. In this example, you can record via up to sixteen channels by connecting up to sixteen mics to the devices. Use the OPTICAL A IN (ADAT) on the device to input the audio signal, and use the WCLK OUT on the device to output the word clock signal to the mic preamp.

Connection Example

Operation
1. Connect the optical output terminal (ADAT) of the mic preamp to the OPTICAL A IN on the device.
2. Connect the WCLK OUT on the device to the word clock input terminal on the mic preamp.
3. Switch the clock source in the device to “Internal” by using the following window.
 - Windows
 (device name) Window (page 7) in the section “Control Panel of the Audio Driver.”
 - Mac
 Audio MIDI Setup
4. Switch the clock source of the mic preamp to the word clock input terminal.

For switching the clock source of the mic preamp, refer to the owner’s manual of your particular mic preamp.

5. Switch the DIGITAL MODE of the OPTICAL A on the device to the “ADAT” by using the “Setup Window” (page 12) in the section “dspMixFx UR824” or the “Settings Window” (page 18) in the section “Dedicated Windows for Cubase Series.”

The operation is now complete.

Using the Device Without a Computer
This section shows how to use the device without a computer, allowing you to use it as a standalone mixer or A/D - D/A converter. You can save the DSP mixer and DSP effect settings configured by the dspMixFx UR824 to the device. These settings are maintained even if you turn off the power of the device.

Connection Example
Procedures

1. Connect the device to a computer with a USB cable.

2. Turn on the device.

3. Open the dspMixFx UR824.
 For instructions on opening the dspMixFx UR824, refer to the “How to Open the Window” (page 9) in the section “dspMixFx UR824.”

4. Configure the DSP mixer and DSP effect settings.

5. When you make the settings, click [X] on the upper left of the window to close the dspMixFx UR824.
 The settings of the dspMixFx UR824 are saved to the device.

The operation is now complete.
Appendix

Glossary

MIX
MIX refers to the stereo output signals which flow in the device. The input signals to the device flow to each MIX. You can assign any MIX to any analog output jack or any digital output jack.

VST Plug-in
VST (Virtual Studio Technology) is a technology developed by Steinberg which allows the integration of virtual effect processors and instruments into your digital audio environment. VST Plug-ins are instrument- and effect-based software of VST format. When you install a VST Plug-in to your computer, it will work on any DAW software compatible with VST Plug-ins, such as Cubase series.

DAW (Digital Audio Workstation)
DAW is an integrative system of music production, which lets you record and edit digital audio data. DAW software programs are applications which allow you to build such comprehensive systems on a computer.

Word Clock
Word clock synchronizes the process timing of audio signals when transferring digital audio data between multiple devices. Normally, one device transmits a reference word clock signal, and the other devices receive this word clock signal and synchronize to it. If the word clock signal is not transferred correctly, click noise may occur or recording may not be successful, even if the sample rates of the various devices are set to the same value.

Buffer Size
Buffer size refers to the amount of memory used to temporarily hold data during playback and recording. It is recommended to adjust the buffer size depending on the situation. Normally, a higher buffer size reduces load to the computer CPU but produces latency (time lag). Smaller buffer sizes reduce latency but produce greater load to the computer CPU. This high load to the computer CPU may result in noise or the sound cutting off.

Scene
A Scene is stored data which maintains the settings on the Main window of dspMixFx UR824. You can recall the stored Scene in dspMixFx UR824, and up to 20 Scenes can be stored.

Settings file of the dspMixFx UR824
The settings file of the dspMixFx UR824 is a data file including up to 20 scenes which can be saved to your computer. You can load the dspMixFx UR824 settings file to the dspMixFx UR824.

Sweet Spot Data
Sweet Spot Data are preset settings data of the Sweet Spot Morphing Channel Strip created by top-class engineers. This data includes the settings for the compressor and equalizer which are saved to each five points around the MORPH knob.

Side Chain Filter
The side chain filter is a peaking filter which adjusts the frequency range to which the compressor is applied. It features Q (band width), F (center frequency), and G (gain) parameters. For example, if the compressor reduces the audio signal level excessively because only the specified frequency of the audio signal is at a high level (and other frequencies are lower), you can selectively lower the level of the specified frequency by using this peaking filter. This will prevent the compressor from excessive level reduction.
Contents of the Getting Started Section

PRECAUTIONS

Introduction
A Message from the Development Team
Included Accessories
How to Read the Manual

Panel Controls and Terminals
Rear Panel
Front Panel

Setup
1. Setting up the Power Supply
2. Installing Cubase AI
3. Installing TOOLS for UR824
4. Downloading the Licenses (Activation)

Basic Operations
Introduction
Connection Example
Configuring Audio Driver Settings on the DAW Software

Troubleshooting

Appendix
Contents of the Operation Manual
Uninstalling TOOLS for UR824
Specifications
Signal Flow
The following chart indicates the signal flow in the device.

NOTE
• The controllers on the device, such as the HI-Z switch, INPUT GAIN knob, and OUTPUT LEVEL knob, are not included in this chart.
• To configure each parameter, use the “dspMixFx UR824” (page 8) or “Dedicated Windows for Cubase Series” (page 14).
• Please note that you cannot use the built-in Channel Strip (Ch. Strip) when the sample rate is set to 176.4 kHz or 192 kHz.
• Some parts of the following signal flow may differ depending on the routing settings in the device.
*1 The following chart indicates the Ch. Strip insertion location.

<table>
<thead>
<tr>
<th>Upper (INS.FX)</th>
<th>Lower (MON.FX)</th>
<th>Not applied (OFF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>From input on the device</td>
<td>From input on the device</td>
<td>From input on the device</td>
</tr>
<tr>
<td>Ch. Strip</td>
<td>Ch. Strip</td>
<td>Ch. Strip</td>
</tr>
<tr>
<td>To DAW input</td>
<td>To DAW input</td>
<td>To DAW input</td>
</tr>
<tr>
<td>To output on the device</td>
<td>To output on the device</td>
<td>To output on the device</td>
</tr>
</tbody>
</table>

You can apply eight Channel Strips to mono channels, or four Channel Strips to a stereo channel.

*2 One of the MIX 1–4 signals can be sent to the REV-X.

*3 The built-in REV-X is equipped with an “FX Bus” which is used for sending the signal from DAW software to the REV-X. For example, to send the recorded audio data to the REV-X, you can check the sound with the REV-X, which is used for monitoring during the recording.
Block Diagrams

UR824 – 44.1/48 kHz
8 Analog In/Out, 16 Digital In/Out, 26 DAW In/24 DAW Out 8+2 BUS
UR824 – 88.2/96 kHz
8 Analog In/Out, 8 Digital In/Out, 18 DAW In/16 DAW Out 8+2 BUS
UR824 – 176.4/192 kHz
8 Analog In/Out, 4 Digital In/Out, 12 DAW In/12 DAW Out 8+2 BUS